An improved cocaine hydrolase: the A328Y mutant of human butyrylcholinesterase is 4-fold more efficient.

نویسندگان

  • W Xie
  • C V Altamirano
  • C F Bartels
  • R J Speirs
  • J R Cashman
  • O Lockridge
چکیده

Butyrylcholinesterase (BChE) has a major role in cocaine detoxication. The rate at which human BChE hydrolyzes cocaine is slow, with a kcat of 3.9 min(-1) and Km of 14 microM. Our goal was to improve cocaine hydrolase activity by mutating residues near the active site. The mutant A328Y had a kcat of 10.2 min(-1) and Km of 9 microM for a 4-fold improvement in catalytic efficiency (kcat/Km). Since benzoylcholine (kcat 15,000 min(-1)) and cocaine form the same acyl-enzyme intermediate but are hydrolyzed at 4000-fold different rates, it was concluded that a step leading to formation of the acyl-enzyme intermediate was rate-limiting. BChE purified from plasma of cat, horse, and chicken was tested for cocaine hydrolase activity. Compared with human BChE, horse BChE had a 2-fold higher kcat but a lower binding affinity, cat BChE was similar to human, and chicken BChE had only 10% of the catalytic efficiency. Naturally occurring genetic variants of human BChE were tested for cocaine hydrolase activity. The J and K variants (E497V and A539T) had k(cat) and Km values similar to wild-type, but because these variants are reduced to 66 and 33% of normal levels in human blood, respectively, people with these variants may be at risk for cocaine toxicity. The atypical variant (D70G) had a 10-fold lower binding affinity for cocaine, suggesting that persons with the atypical variant of BChE may experience severe or fatal cocaine intoxication when administered a dose of cocaine that is not harmful to others.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gene transfer of cocaine hydrolase suppresses cardiovascular responses to cocaine in rats.

We previously found that injection of a cocaine hydrolase (CocE) engineered from human butyrylcholinesterase will transiently accelerate cocaine metabolism in rats while reducing physiological and behavioral responses. To investigate more extended therapeutic effects, CocE cDNA was incorporated into a replication-incompetent type-5 adenoviral vector with a cytomegalovirus promoter. In rats dose...

متن کامل

Re-engineering butyrylcholinesterase as a cocaine hydrolase.

To address the problem of acute cocaine overdose, we undertook molecular engineering of butyrylcholinesterase (BChE) as a cocaine hydrolase so that modest doses could be used to accelerate metabolic clearance of this drug. Molecular modeling of BChE complexed with cocaine suggested that the inefficient hydrolysis (k(cat) = 4 min(-1)) involves a rotation toward the catalytic triad, hindered by T...

متن کامل

Preparation and in vivo characterization of a cocaine hydrolase engineered from human butyrylcholinesterase for metabolizing cocaine.

Cocaine is a widely abused drug without an FDA (Food and Drug Administration)-approved medication. It has been recognized that an ideal anti-cocaine medication would accelerate cocaine metabolism producing biologically inactive metabolites via a route similar to the primary cocaine-metabolizing pathway, i.e. human BChE (butyrylcholinesterase)-catalysed hydrolysis. However, the native human BChE...

متن کامل

An engineered cocaine hydrolase blunts and reverses cardiovascular responses to cocaine in rats.

There is increasing evidence that human plasma butyrylcholinesterase can lower the toxicity of cocaine overdose. Recently, with structure-based protein engineering, we converted this enzyme into a more efficient cocaine hydrolase (CocE). When tested in rats, CocE shortened cocaine's plasma half-life and decreased drug accumulation in heart and brain. Here, we have investigated the potential of ...

متن کامل

Computational redesign of human butyrylcholinesterase for anticocaine medication.

Molecular dynamics was used to simulate the transition state for the first chemical reaction step (TS1) of cocaine hydrolysis catalyzed by human butyrylcholinesterase (BChE) and its mutants. The simulated results demonstrate that the overall hydrogen bonding between the carbonyl oxygen of (-)-cocaine benzoyl ester and the oxyanion hole of BChE in the TS1 structure for (-)-cocaine hydrolysis cat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular pharmacology

دوره 55 1  شماره 

صفحات  -

تاریخ انتشار 1999